Wednesday, April 22, 2009

Disadvantages of optical fibers compared to wires

* higher cost
* need for more expensive optical transmitters and receivers
* more difficult and expensive to splice than wires
* at higher optical powers, is susceptible to "fiber fuse" wherein a bit too much light meeting with an imperfection can destroy several metres per second "fiber fuse" detection circuitry at the transmitter can break the circuit and halt the failure to minimize damage.
* cannot carry electrical power to operate terminal devices (Note: current telecommunication trends greatly reduce this concern: availability of cell phones and wireless PDAs; the routine inclusion of back-up batteries in communication devices; lack of real interest in hybrid metal-fiber cables; increased use of fiber-based intermediate systems)

Advantages of optical fibers over wires

  • low loss, so repeater-less transmission over long distances is possible
  • large data-carrying capacity (thousands of times greater)
  • immunity to electromagnetic interference, including nuclear electromagnetic pulses (but can be damaged by alpha and beta radiation)
  • high electrical resistance, so safe to use near high-voltage equipment or between areas with different earth potentials
  • light weight
  • signals contain very little power

Saturday, January 31, 2009

Why would I use an APC connector?

APC, or angled polish connectors, minimize back reflection, ensuring the light does not reflect back into the transmitter or cable once it reaches the receive end. APC Connectors are typically used for application specific single mode projects.

What does fast axis and slow axis mean for PM?

Fast and slow refers to the alignment or propagation direction (plane) of the light. Fast axis aligns the internal stress rods in a horizontal fashion, while slow axis aligns stress rods in a vertical fashion.

What are mode-conditioning cables used for?

Mode conditioning cables are used in situations requiring connection of a multimode system to a single mode signal.

Thursday, January 29, 2009

How Are Optical Fibers Made?

Now that we know how fiber-optic systems work and why they are useful -- how do they make them? Optical fibers are made of extremely pure optical glass. We think of a glass window as transparent, but the thicker the glass gets, the less transparent it becomes due to impurities in the glass. However, the glass in an optical fiber has far fewer impurities than window-pane glass. One company's description of the quality of glass is as follows: If you were on top of an ocean that is miles of solid core optical fiber glass, you could see the bottom clearly.

Making optical fibers requires the following steps:

  1. Making a preform glass cylinder
  2. Drawing the fibers from the preform
  3. Testing the fibers

Making the Preform Blank
The glass for the preform is made by a process called modified chemical vapor deposition (MCVD).


Image courtesy Fibercore Ltd.
MCVD process for making the preform blank


In MCVD, oxygen is bubbled through solutions of silicon chloride (SiCl4), germanium chloride (GeCl4) and/or other chemicals. The precise mixture governs the various physical and optical properties (index of refraction, coefficient of expansion, melting point, etc.). The gas vapors are then conducted to the inside of a synthetic silica or quartz tube (cladding) in a special lathe. As the lathe turns, a torch is moved up and down the outside of the tube. The extreme heat from the torch causes two things to happen:


Photo courtesy Fibercore Ltd.
Lathe used in preparing
the preform blank

  • The silicon and germanium react with oxygen, forming silicon dioxide (SiO2) and germanium dioxide (GeO2).

  • The silicon dioxide and germanium dioxide deposit on the inside of the tube and fuse together to form glass.

The lathe turns continuously to make an even coating and consistent blank. The purity of the glass is maintained by using corrosion-resistant plastic in the gas delivery system (valve blocks, pipes, seals) and by precisely controlling the flow and composition of the mixture. The process of making the preform blank is highly automated and takes several hours. After the preform blank cools, it is tested for quality control (index of refraction).

Drawing Fibers from the Preform Blank
Once the preform blank has been tested, it gets loaded into a fiber drawing tower.


Diagram of a fiber drawing tower used to draw optical glass fibers from a preform blank

The blank gets lowered into a graphite furnace (3,452 to 3,992 degrees Fahrenheit or 1,900 to 2,200 degrees Celsius) and the tip gets melted until a molten glob falls down by gravity. As it drops, it cools and forms a thread.


The operator threads the strand through a series of coating cups (buffer coatings) and ultraviolet light curing ovens onto a tractor-controlled spool. The tractor mechanism slowly pulls the fiber from the heated preform blank and is precisely controlled by using a laser micrometer to measure the diameter of the fiber and feed the information back to the tractor mechanism. Fibers are pulled from the blank at a rate of 33 to 66 ft/s (10 to 20 m/s) and the finished product is wound onto the spool. It is not uncommon for spools to contain more than 1.4 miles (2.2 km) of optical fiber.

Testing the Finished Optical Fiber
The finished optical fiber is tested for the following:

  • Tensile strength - Must withstand 100,000 lb/in2 or more

  • Refractive index profile - Determine numerical aperture as well as screen for optical defects

  • fiber optic spool
    Photo courtesy Corning
    Finished spool of optical fiber
    Fiber geometry
    - Core diameter, cladding dimensions and coating diameter are uniform

  • Attenuation - Determine the extent that light signals of various wavelengths degrade over distance

  • Information carrying capacity (bandwidth) - Number of signals that can be carried at one time (multi-mode fibers)

  • Chromatic dispersion - Spread of various wavelengths of light through the core (important for bandwidth)

  • Operating temperature/humidity range

  • Temperature dependence of attenuation

  • Ability to conduct light underwater - Important for undersea cables

­ Once t­he fibers have passed the quality control, they are sold to telephone companies, cable companies and network providers. Many companies are currently replacing their old copper-wire-based systems with new fiber-optic-based systems to improve speed, capacity and clarity.

Monday, January 12, 2009

Revolutionization in world communications

Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.

Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.

Issues and Applications Covered Include:


• Optical fiber components
• New fiber materials and designs
• Fiber lasers and amplifiers
• Fiber switching, memory, and signal processing
• Modulation format for transmission systems
• Fiber nonlinearities and countermeasures
• Long-haul transmission systems
• Fiber local area networks
• Fiber sensors and instrumentation

Tuesday, January 6, 2009

Fiber fuse (Optical Fibre )

At high optical intensities, above 2 megawatts per square centimetre, when a fiber is subjected to a shock or is otherwise suddenly damaged, a fiber fuse can occur. The reflection from the damage vaporizes the fiber immediately before the break, and this new defect remains reflective so that the damage propagates back toward the transmitter at 1–3 meters per second.The open fiber control system, which ensures laser eye safety in the event of a broken fiber, can also effectively halt propagation of the fiber fuse. In situations, such as undersea cables, where high power levels might be used without the need for open fiber control, a "fiber fuse" protection device at the transmitter can break the circuit to prevent any damage.

Optical fiber free-space coupling

It often becomes necessary to align an optical fiber with another optical fiber or an optical device such as a light-emitting diode, a laser diode, or an optoelectronic device such as a modulator. This can involve either carefully aligning the fiber and placing it in contact with the device to which it is to couple, or can use a lens to allow coupling over an air gap. In some cases the end of the fiber is polished into a curved form that is designed to allow it to act as a lens.

In a laboratory environment, the fiber end is usually aligned to the device or other fiber with a fiber launch system that uses a microscope objective lens to focus the light down to a fine point. A precision translation stage (micro-positioning table) is used to move the lens, fiber, or device to allow the coupling efficiency to be optimized.

Optic Fiber Termination and Splicing

Optical fibers are connected to terminal equipment by optical fiber connectors. These connectors are usually of a standard type such as FC, SC, ST, LC, or MTRJ.

Optical fibers may be connected to each other by connectors or by splicing, that is, joining two fibers together to form a continuous optical waveguide. The generally accepted splicing method is arc fusion splicing, which melts the fiber ends together with an electric arc. For quicker fastening jobs, a "mechanical splice" is used.

Fusion splicing is done with a specialized instrument that typically operates as follows: The two cable ends are fastened inside a splice enclosure that will protect the splices, and the fiber ends are stripped of their protective polymer coating (as well as the more sturdy outer jacket, if present). The ends are cleaved (cut) with a precision cleaver to make them perpendicular, and are placed into special holders in the splicer. The splice is usually inspected via a magnified viewing screen to check the cleaves before and after the splice. The splicer uses small motors to align the end faces together, and emits a small spark between electrodes at the gap to burn off dust and moisture. Then the splicer generates a larger spark that raises the temperature above the melting point of the glass, fusing the ends together permanently. The location and energy of the spark is carefully controlled so that the molten core and cladding don't mix, and this minimizes optical loss. A splice loss estimate is measured by the splicer, by directing light through the cladding on one side and measuring the light leaking from the cladding on the other side. A splice loss under 0.1 dB is typical. The complexity of this process makes fiber splicing much more difficult than splicing copper wire.

Mechanical fiber splices are designed to be quicker and easier to install, but there is still the need for stripping, careful cleaning and precision cleaving. The fiber ends are aligned and held together by a precision-made sleeve, often using a clear index-matching gel that enhances the transmission of light across the joint. Such joints typically have higher optical loss and are less robust than fusion splices, especially if the gel is used. All splicing techniques involve the use of an enclosure into which the splice is placed for protection afterward.

Fibers are terminated in connectors so that the fiber end is held at the end face precisely and securely. A fiber-optic connector is basically a rigid cylindrical barrel surrounded by a sleeve that holds the barrel in its mating socket. The mating mechanism can be "push and click", "turn and latch" ("bayonet"), or screw-in (threaded). A typical connector is installed by preparing the fiber end and inserting it into the rear of the connector body. Quick-set adhesive is usually used so the fiber is held securely, and a strain relief is secured to the rear. Once the adhesive has set, the fiber's end is polished to a mirror finish. Various polish profiles are used, depending on the type of fiber and the application. For singlemode fiber, the fiber ends are typically polished with a slight curvature, such that when the connectors are mated the fibers touch only at their cores. This is known as a "physical contact" (PC) polish. The curved surface may be polished at an angle, to make an "angled physical contact" (APC) connection. Such connections have higher loss than PC connections, but greatly reduced back reflection, because light that reflects from the angled surface leaks out of the fiber core; the resulting loss in signal strength is known as gap loss. APC fiber ends have low back reflection even when disconnected.

Optical fiber cables

In practical fibers, the cladding is usually coated with a tough resin buffer layer, which may be further surrounded by a jacket layer, usually plastic. These layers add strength to the fiber but do not contribute to its optical wave guide properties. Rigid fiber assemblies sometimes put light-absorbing ("dark") glass between the fibers, to prevent light that leaks out of one fiber from entering another. This reduces cross-talk between the fibers, or reduces flare in fiber bundle imaging applications.

Modern cables come in a wide variety of sheathings and armor, designed for applications such as direct burial in trenches, high voltage isolation, dual use as power lines,installation in conduit, lashing to aerial telephone poles, submarine installation, and insertion in paved streets. The cost of small fiber-count pole-mounted cables has greatly decreased due to the high Japanese and South Korean demand for fiber to the home (FTTH) installations.

Fiber cable can be very flexible, but traditional fiber's loss increases greatly if the fiber is bent with a radius smaller than around 30 mm. This creates a problem when the cable is bent around corners or wound around a spool, making FTTX installations more complicated. "Bendable fibers", targeted towards easier installation in home environments, have been standardized as ITU-T G.657. This type of fiber can be bent with a radius as low as 7.5 mm without adverse impact. Even more bendable fibers have been developed. Bendable fiber may also be resistant to fiber hacking, in which the signal in a fiber is surreptitiously monitored by bending the fiber and detecting the leakage.

What are uses of Optical Fibers?

Fibers are widely used in illumination applications. They are used as light guides in medical and other applications where bright light needs to be shone on a target without a clear line-of-sight path. In some buildings, optical fibers are used to route sunlight from the roof to other parts of the building. Optical fiber illumination is also used for decorative applications, including signs, art, and artificial Christmas trees. Swarovski boutiques use optical fibers to illuminate their crystal showcases from many different angles while only employing one light source. Optical fiber is an intrinsic part of the light-transmitting concrete building product, LiTraCon.
A fiber-optic Christmas Tree

Optical fiber is also used in imaging optics. A coherent bundle of fibers is used, sometimes along with lenses, for a long, thin imaging device called an endoscope, which is used to view objects through a small hole. Medical endoscopes are used for minimally invasive exploratory or surgical procedures (endoscopy). Industrial endoscopes are used for inspecting anything hard to reach, such as jet engine interiors.

An optical fiber doped with certain rare-earth elements such as erbium can be used as the gain medium of a laser or optical amplifier. Rare-earth doped optical fibers can be used to provide signal amplification by splicing a short section of doped fiber into a regular (undoped) optical fiber line. The doped fiber is optically pumped with a second laser wavelength that is coupled into the line in addition to the signal wave. Both wavelengths of light are transmitted through the doped fiber, which transfers energy from the second pump wavelength to the signal wave. The process that causes the amplification is stimulated emission.

Optical fibers doped with a wavelength shifter are used to collect scintillation light in physics experiments.

Optical fiber can be used to supply a low level of power (around one watt) to electronics situated in a difficult electrical environment. Examples of this are electronics in high-powered antenna elements and measurement devices used in high voltage transmission equipment.

What Are Fiber optic sensors ?

Fibers are widely used in illumination applications. They are used as light guides in medical and other applications where bright light needs to be shone on a target without a clear line-of-sight path. In some buildings, optical fibers are used to route sunlight from the roof to other parts of the building (see non-imaging optics). Optical fiber illumination is also used for decorative applications, including signs, art, and artificial Christmas trees. Swarovski boutiques use optical fibers to illuminate their crystal showcases from many different angles while only employing one light source. Optical fiber is an intrinsic part of the light-transmitting concrete building product, LiTraCon.
A fiber-optic Christmas Tree

Optical fiber is also used in imaging optics. A coherent bundle of fibers is used, sometimes along with lenses, for a long, thin imaging device called an endoscope, which is used to view objects through a small hole. Medical endoscopes are used for minimally invasive exploratory or surgical procedures (endoscopy). Industrial endoscopes (see fiberscope or borescope) are used for inspecting anything hard to reach, such as jet engine interiors.

Applications of Optical Fiber

Optical fiber can be used as a medium for telecommunication and networking because it is flexible and can be bundled as cables. It is especially advantageous for long-distance communications, because light propagates through the fiber with little attenuation compared to electrical cables. This allows long distances to be spanned with few repeaters. Additionally, the per-channel light signals propagating in the fiber can be modulated at rates as high as 111 Gb/s, although 10 or 40 Gb/s is typical in deployed systems. Each fiber can carry many independent channels, each using a different wavelength of light (wavelength-division multiplexing (WDM)). The net data rate (data rate without overhead bytes) per fiber is the per-channel data rate reduced by the FEC overhead, multiplied by the number of channels (usually up to 80 in commercial dense WDM systems as of 2008[update]).

Over short distances, such as networking within a building, fiber saves space in cable ducts because a single fiber can carry much more data than a single electrical cable. Fiber is also immune to electrical interference; there is no cross-talk between signals in different cables and no pickup of environmental noise. Non-armored fiber cables do not conduct electricity, which makes fiber a good solution for protecting communications equipment located in high voltage environments such as power generation facilities, or metal communication structures prone to lightning strikes. They can also be used in environments where explosive fumes are present, without danger of ignition. Wiretapping is more difficult compared to electrical connections, and there are concentric dual core fibers that are said to be tap-proof.

Although fibers can be made out of transparent plastic, glass, or a combination of the two, the fibers used in long-distance telecommunications applications are always glass, because of the lower optical attenuation. Both multi-mode and single-mode fibers are used in communications, with multi-mode fiber used mostly for short distances (up to 550 m), and single-mode fiber used for longer distance links. Because of the tighter tolerances required to couple light into and between single-mode fibers (core diameter about 10 micrometers), single-mode transmitters, receivers, amplifiers and other components are generally more expensive than multi-mode components.

Application examples: TOSLINK, Fiber distributed data interface, Synchronous optical networking

History of Optical Fiber

Guiding of light by refraction, the principle that makes fiber optics possible, was first demonstrated by Daniel Colladon and Jacques Babinet in Paris in the 1840s, with Irish inventor John Tyndall offering public displays using water-fountains ten years later. Practical applications, such as close internal illumination during dentistry, appeared early in the twentieth century. Image transmission through tubes was demonstrated independently by the radio experimenter Clarence Hansell and the television pioneer John Logie Baird in the 1920s. The principle was first used for internal medical examinations by Heinrich Lamm in the following decade. In 1952, physicist Narinder Singh Kapany conducted experiments that led to the invention of optical fiber, based on Tyndall's earlier studies; modern optical fibers, where the glass fiber is coated with a transparent cladding to offer a more suitable refractive index, appeared later in the decade. Development then focused on fiber bundles for image transmission. The first fiber optic semi-flexible gastroscope was patented by Basil Hirschowitz, C. Wilbur Peters, and Lawrence E. Curtiss, researchers at the University of Michigan, in 1956. In the process of developing the gastroscope, Curtiss produced the first glass-clad fibers; previous optical fibers had relied on air or impractical oils and waxes as the low-index cladding material. A variety of other image transmission applications soon followed.

In 1965, Charles K. Kao and George A. Hockham of the British company Standard Telephones and Cables (STC) were the first to promote the idea that the attenuation in optical fibers could be reduced below 20 dB per kilometer, allowing fibers to be a practical medium for communication. They proposed that the attenuation in fibers available at the time was caused by impurities, which could be removed, rather than fundamental physical effects such as scattering. The crucial attenuation level of 20 dB was first achieved in 1970, by researchers Robert D. Maurer, Donald Keck, Peter C. Schultz, and Frank Zimar working for American glass maker Corning Glass Works, now Corning Incorporated. They demonstrated a fiber with 17 dB optic attenuation per kilometer by doping silica glass with titanium. A few years later they produced a fiber with only 4 dB/km using germanium dioxide as the core dopant. Such low attenuations ushered in optical fiber telecommunications and enabled the Internet. In 1981, General Electric produced fused quartz ingots that could be drawn into fiber optic strands 25 miles long.

Attenuations in modern optical cables are far less than those in electrical copper cables, leading to long-haul fiber connections with repeater distances of 50–80 km. The erbium-doped fiber amplifier, which reduced the cost of long-distance fiber systems by reducing or even in many cases eliminating the need for optical-electrical-optical repeaters, was co-developed by teams led by David N. Payne of the University of Southampton, and Emmanuel Desurvire at Bell Laboratories in 1986. The more robust optical fiber commonly used today utilizes glass for both core and sheath and is therefore less prone to aging processes. It was invented by Gerhard Bernsee in 1973 of Schott Glass in Germany.

In 1991, the emerging field of photonic crystals led to the development of photonic crystal fiber which guides light by means of diffraction from a periodic structure, rather than total internal reflection. The first photonic crystal fibers became commercially available in 2000. Photonic crystal fibers can be designed to carry higher power than conventional fiber, and their wavelength dependent properties can be manipulated to improve their performance in certain applications.

What is Optical fiber ?

optical fiber (or fibre) is a glass or plastic fiber that carries light along its length. Fiber optics is the overlap of applied science and engineering concerned with the design and application of optical fibers. Optical fibers are widely used in fiber-optic communications, which permits transmission over longer distances and at higher data rates (a.k.a "bandwidth") than other forms of communications. Fibers are used instead of metal wires because signals travel along them with less loss, and they are also immune to electromagnetic interference. Fibers are also used for illumination, and are wrapped in bundles so they can be used to carry images, thus allowing viewing in tight spaces. Specially designed fibers are used for a variety of other applications, including sensors and fiber lasers.

Light is kept in the "core" of the optical fiber by total internal reflection. This causes the fiber to act as a waveguide. Fibers which support many propagation paths or transverse modes are called multi-mode fibers (MMF). Fibers which can only support a single mode are called single-mode fibers (SMF). Multi-mode fibers generally have a larger core diameter, and are used for short-distance communication links and for applications where high power must be transmitted. Single-mode fibers are used for most communication links longer than 550 meters.

Joining lengths of optical fiber is more complex than joining electrical wire or cable. The ends of the fibers must be carefully cleaved, and then spliced together either mechanically or by fusing them together with an electric arc. Special connectors are used to make removable connections.

Fiber Splicer Safety Summary

DO NOT OPERATE THE FIBER CLEAVER OR FUSION SPLICER UNLESS YOU HAVE BEEN PROPERLY TRAINED BY A LAB TECHNICIAN OR DR. HICHWA.

Safety glasses must be worn at all times while cleaving fiber.

The cut ends of optical fiber are dangerous. They are basically glass needles that will penetrate flesh then break off and become nearly impossible to remove. Once in your body it will likely become infected.

Find and dispose of all cut fiber fragments immediately after cutting. Proper disposal means placing them in an approved fiber disposal unit (not a trash can).

Handle cut fiber fragments with tweezers only.

It is the operator’s responsibility to ensure that no fiber fragments ‘escape’ and injure someone. If you lose a fiber fragment you must look until you find it or it is sure to stick someone (maybe you a few minutes later).

Fiber fragments can stick to the cover of the cleaver. Move slowly when opening the cover. Always look on the inside of the cover if you don’t see your fragment on the shelf. Fragments can also fall down by the diamond wheel.

If you can’t find your fragment, get more light on the subject and work area. Do not move the cleaver until the fragment has been found. Use a magnifying glass if you need to but FIND THAT FRAGMENT.